Integrins are heterodimeric adhesion receptors that regulate immune cell adhesion. Integrin-dependent adhesion is controlled by multiple conformational states that include states with different affinity to the ligand, states with various degrees of molecule unbending, and others. Affinity change and molecule unbending play major roles in the regulation of cell adhesion. The relationship between different conformational states of the integrin is unclear. Here we have used conformationally sensitive antibodies and a small LDV-containing ligand to study the role of the inside-out signaling through formyl peptide receptor and CXCR4 in the regulation of ␣ 4  1 integrin conformation. We found that in the absence of ligand, activation by formyl peptide or SDF-1 did not result in a significant exposure of HUTS-21 epitope. Occupancy of the ligand binding pocket without cell activation was sufficient to induce epitope exposure. EC 50 for HUTS-21 binding in the presence of LDV was identical to a previously reported ligand equilibrium dissociation constant at rest and after activation. Furthermore, the rate of HUTS-21 binding was also related to the VLA-4 activation state even at saturating ligand concentration. We propose that the unbending of the integrin molecule after guanine nucleotide-binding protein-coupled receptor-induced signaling accounts for the enhanced rate of HUTS-21 binding. Taken together, current results support the existence of multiple conformational states independently regulated by both inside-out signaling and ligand binding. Our data suggest that VLA-4 integrin hybrid domain movement does not depend on the affinity state of the ligand binding pocket.In the bloodstream circulating leukocytes respond to inflammatory signals by rapid changes of cell adhesive properties.These include cell tethering, rolling, arrest, and firm adhesion, all of which are well described steps of leukocyte recruitment to the sites of inflammation (1). Leukocyte arrest and firm adhesion are mediated exclusively by integrin receptors (2). At the same time integrins can also mediate tethering and rolling (3). These largely diverse cell adhesive properties are achieved by sophisticated conformational regulation; multiple states of the same molecule with different affinity for its ligand and different degrees of molecular unbending are attributed to various types of "cellular behavior." It is proposed that the low affinity bent state translates into a non-adhesive resting cell, the low affinity unbent or extended state of integrin results in cell rolling, and the high affinity state promotes cell arrest (4, 5). However, the exact sequence of conformational events and the relationship between integrin conformational and functional activity remain key questions (6).Integrin conformation is regulated through G-protein-coupled receptors by a signaling pathway which is initiated by ligand binding to a GPCR, 3 propagated inside the cell, and results in the binding of signaling proteins (such as talin and others) to cytoplasmic domains ...