Snake venoms contain unique components that affect cell-matrix interactions. Disintegrins represent a class of low molecular weight, Arg-Gly-Asp (RGD)-containing, cysteine-rich peptides purified from the venom of various snakes among the Viperidae and Crotalidae. They bind with various degrees of specificity to integrins alpha IIb beta 3, alpha 5 beta 1 and alpha V beta 3 expressed on cells. Snake venom metalloproteases (high molecular mass haemorrhagins) also contain disintegrin-like domains, in addition to zinc-chelating sequences. Membrane-anchored ADAMs (A Disintegrin And Metalloprotease domain), multidomain molecules consisting of metalloprotease, disintegrin-like, cysteine-rich, and epidermal growth factor domains, a transmembrane domain and a cytoplasmic tail, are a new family of proteins. In the light of the large number and wide distribution of ADAMs, they may participate in cell-cell fusion events, including sperm-egg binding and fusion, myoblast fusion and other cell-cell and cell-matrix interactions. The structure-function relationship of these molecules is discussed.