Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rotation matters for the life of a star. It causes a multitude of dynamical phenomena in the stellar interior during a star’s evolution, and its effects accumulate until the star dies. All stars rotate at some level, but most of those born with a mass higher than 1.3 times the mass of the Sun rotate rapidly during more than 90% of their nuclear lifetime. Internal rotation guides the angular momentum and chemical element transport throughout the stellar interior. These transport processes change over time as the star evolves. The cumulative effects of stellar rotation and its induced transport processes determine the helium content of the core by the time it exhausts its hydrogen isotopes. The amount of helium at that stage also guides the heavy element yields by the end of the star’s life. A proper theory of stellar evolution and any realistic models for the chemical enrichment of galaxies must be based on observational calibrations of stellar rotation and of the induced transport processes. In the last few years, asteroseismology offers such calibrations for single and binary stars. We review the current status of asteroseismic modelling of rotating stars for different stellar mass regimes in an accessible way for the non-expert. While doing so, we describe exciting opportunities sparked by asteroseismology for various domains in astrophysics, touching upon topics such as exoplanetary science, galactic structure and evolution, and gravitational wave physics to mention just a few. Along the way we provide ample sneak-previews for future ‘industrialised’ applications of asteroseismology to slow and rapid rotators from the exploitation of combined Kepler, Transiting Exoplanet Survey Satellite (TESS), PLAnetary Transits and Oscillations of stars (PLATO), Gaia, and ground-based spectroscopic and multi-colour photometric surveys. We end the review with a list of takeaway messages and achievements of asteroseismology that are of relevance for many fields of astrophysics.
Rotation matters for the life of a star. It causes a multitude of dynamical phenomena in the stellar interior during a star’s evolution, and its effects accumulate until the star dies. All stars rotate at some level, but most of those born with a mass higher than 1.3 times the mass of the Sun rotate rapidly during more than 90% of their nuclear lifetime. Internal rotation guides the angular momentum and chemical element transport throughout the stellar interior. These transport processes change over time as the star evolves. The cumulative effects of stellar rotation and its induced transport processes determine the helium content of the core by the time it exhausts its hydrogen isotopes. The amount of helium at that stage also guides the heavy element yields by the end of the star’s life. A proper theory of stellar evolution and any realistic models for the chemical enrichment of galaxies must be based on observational calibrations of stellar rotation and of the induced transport processes. In the last few years, asteroseismology offers such calibrations for single and binary stars. We review the current status of asteroseismic modelling of rotating stars for different stellar mass regimes in an accessible way for the non-expert. While doing so, we describe exciting opportunities sparked by asteroseismology for various domains in astrophysics, touching upon topics such as exoplanetary science, galactic structure and evolution, and gravitational wave physics to mention just a few. Along the way we provide ample sneak-previews for future ‘industrialised’ applications of asteroseismology to slow and rapid rotators from the exploitation of combined Kepler, Transiting Exoplanet Survey Satellite (TESS), PLAnetary Transits and Oscillations of stars (PLATO), Gaia, and ground-based spectroscopic and multi-colour photometric surveys. We end the review with a list of takeaway messages and achievements of asteroseismology that are of relevance for many fields of astrophysics.
Eclipsing binaries are crucial for understanding stellar physics, allowing detailed studies of stellar masses, radii, and orbital dynamics. Recent space missions like the Transiting Exoplanet Survey Satellite (TESS) have significantly expanded the catalogue of observed eclipsing binaries with uninterrupted time series photometry, providing an opportunity for large-scale ensemble studies. This study aims to analyse the statistical properties of circularisation in a large sample of intermediate-to-high mass eclipsing binaries observed by TESS. We explore the dependence of orbital circularisation on stellar properties and orbital parameters to improve our understanding of the physical processes affecting these systems. We further aim to assess the role of stellar pulsations in circularisation. We compiled a catalogue of O- to F-type stars to search for eclipsing binary signals in the data available from the first four years of the TESS mission. Using automated classification and data analysis methodologies, we arrive at a well-characterised sample of 14,573 eclipsing binaries. We supplement our catalogue with Gaia effective temperatures, and investigate the statistical characteristics of the sample as a function of temperature, orbital period, and scaled orbital separation. The orbital circularisation was measured with statistical methods to obtain three distinct measurements of the critical period and separation in four temperature ranges. These measurements cover a range of orbital periods and separations where both circularised and eccentric systems exist. Pulsations were identified in the g- and p-mode regimes and a reduced fraction of eccentric systems was found among them. Our analysis revealed the dependence of orbital circularisation on stellar temperatures, also seen in other studies, and confirmed previous findings that additional dissipation is needed as compared to the predictions of turbulent viscosity and non-resonant radiative damping. We speculate that pulsations may play a role in the circularisation of close binaries. Our study highlights the need for dissipative mechanisms that can produce a wide range of critical periods from a range of initial conditions.
Products of stellar mergers are predicted to be common in stellar populations and can potentially explain stars with peculiar properties. When the merger occurs after the initially more massive star has evolved into the Hertzsprung gap, the merger product may remain in the blue part of the Hertzsprung-Russell diagram for millions of years. Such objects could, therefore, explain the overabundance of observed blue stars, such as blue supergiants. However, it is currently not straightforward to distinguish merger products from genuine single stars or other stars with similar surface diagnostics. In this work, we made detailed asteroseismic comparisons between models of massive post-main-sequence merger products and genuine single stars to identify which asteroseismic diagnostics can be used to distinguish them. In doing so, we developed tools for the relatively young field of merger seismology. Genuine single stars in the Hertzsprung gap are fully radiative, while merger products have a convective He-burning core and convective H-burning shell while occupying similar locations in the Hertzsprung-Russell diagram. These major structural differences are reflected in lower asymptotic period spacing values for merger products and the appearance of deep dips in their period spacing patterns. Our genuine single-star models with masses above roughly 11.4 solar masses develop short-lived intermediate convective zones during their Hertzsprung gap evolution. This also leads to deep dips in their period spacing patterns. Because of the lack of a convective core, merger products and genuine single stars can be distinguished based on their asymptotic period spacing value in this mass range. We performed the comparisons with and without the effects of slow rotation included in the pulsation equations and conclude that the two types of stars are seismically distinguishable in both cases. The observability of the distinguishing asteroseismic features of merger products can now be assessed and exploited in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.