We examined the morphological and functional characteristics of erythroblasts derived from marrow erythroid progenitor cells grown in a methylcellulose microculture, which were taken from a female child with rare atypical sideroblastic anaemia (SA) partially responsive to pyridoxine. Colony formation was within the normal range in three successive cultures (median values: 82.25 CFU-E and 16.4 BFU-E derived colonies/6.6 X 10(4) cells) compared to growth by normal cells (65-315 CFU-E and 9-40 BFU-E). We evaluated in vitro differentiation by biochemical microassay of a cytosol enzyme involved in the haem pathway: uroporphyrinogen I synthase (UROS). The UROS values in the erythroid colonies from SA marrow were at the lowere end of the normal range (median values: 6.7 +/- 0.3 and 14.4 +/- 3.8 pmol uroporphyrinogen/h in CFU-E and BFU-E-derived colonies respectively versus 17.4 +/- 7.3 and 25 +/- 7.2 pmol/h in CFU-E and BFU-E colonies from normal subjects. Ultrastructural examination of the SA erythroblasts from non-cultured bone marrow or derived from cultured BFU-E revealed the characteristic deposition of iron in mitochondria around the nucleus of most cells (ringed sideroblasts). However, the majority of cultured cells had marked dyserythropoietic features, with a large number of bilobulated or trilobulated erythroblasts, multiple cytoplasmic vacuoles, numerous abnormalities of the nucleus, and excessive membrane material beneath the plasma membrane, all features difficult to observe in non-cultured marrows.