Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As regards wheat varieties constituting a natural ploid series the issue of analysing diploid, tetraploid and hexaploid species is topical since ancient varieties can play significant roles in contemporary agriculture as well. Seventeen winter wheat varieties, out of which 2 diploid varieties carried genome A, 9 diploidic types had genomes AB, two varieties had genomes AG and four varieties were hexaploid ones with genomes ABD, were analysed from the point of view of their amino acid compositions. The amino acid contents of Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Phe, His, Lys, Arg, Pro (a total of 17) were determined in the varieties listed above. It has been found that the amino acid contents of the grains genotype AA Triticum boeticum and T. monococcum exceeded the amino acid content of T. aestivum in respect of all the amino acids analysed in this experiment, with Glu being the only exception. In comparison with the aestivum wheat, essential amino acid contents showed a similarly favourable picture in the diploidic varieties mentioned. As regards type AB tetraploid varieties excesses of 13-16%, in comparison to the aestivum wheat, were found in essential amino acid contents. The amounts of non-essential amino acids in all the winter wheat varieties showed decreases irrespective of the ploid level. What concerns the total amino acid content, all the winter wheat varieties with the exception of T. monococcum (A), T. dicoccoides (AB) and T. dicoccum (AB) contained less amino acid than the aestivum wheat. All the monocarbonic acid and aromatic as well as heterocyclic amino acid contents of the wildly growing Triticum boeticum (A) and the grown Triticum monococcum (A) (with polaric, apolaric R groups, diamino radicles) exceeded the same contents of T. aestivum. The value of the monoamino-dicarbonic acid, however, was lower in our experiment.
As regards wheat varieties constituting a natural ploid series the issue of analysing diploid, tetraploid and hexaploid species is topical since ancient varieties can play significant roles in contemporary agriculture as well. Seventeen winter wheat varieties, out of which 2 diploid varieties carried genome A, 9 diploidic types had genomes AB, two varieties had genomes AG and four varieties were hexaploid ones with genomes ABD, were analysed from the point of view of their amino acid compositions. The amino acid contents of Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Phe, His, Lys, Arg, Pro (a total of 17) were determined in the varieties listed above. It has been found that the amino acid contents of the grains genotype AA Triticum boeticum and T. monococcum exceeded the amino acid content of T. aestivum in respect of all the amino acids analysed in this experiment, with Glu being the only exception. In comparison with the aestivum wheat, essential amino acid contents showed a similarly favourable picture in the diploidic varieties mentioned. As regards type AB tetraploid varieties excesses of 13-16%, in comparison to the aestivum wheat, were found in essential amino acid contents. The amounts of non-essential amino acids in all the winter wheat varieties showed decreases irrespective of the ploid level. What concerns the total amino acid content, all the winter wheat varieties with the exception of T. monococcum (A), T. dicoccoides (AB) and T. dicoccum (AB) contained less amino acid than the aestivum wheat. All the monocarbonic acid and aromatic as well as heterocyclic amino acid contents of the wildly growing Triticum boeticum (A) and the grown Triticum monococcum (A) (with polaric, apolaric R groups, diamino radicles) exceeded the same contents of T. aestivum. The value of the monoamino-dicarbonic acid, however, was lower in our experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.