BackgroundCommon polygenic risk and de novo variants (DNVs) capture a small proportion of autism spectrum disorder (ASD) liability, and ASD phenotypic heterogeneity remains difficult to explain. Integrating multiple genetic factors contribute to clarifying the risk and clinical presentation of ASD.MethodsIn our study, we investigated the individual and combined effects of polygenic risk, damaging DNVs (including those in ASD risk genes), and sex among 2,591 ASD simplex families in the Simons Simplex Collection. We also explored the interactions among these factors, along with the broad autism phenotypes of ASD probands and their unaffected siblings. Finally, we combined the effects of polygenic risk, damaging DNVs in ASD risk genes, and sex to explain the total liability of ASD phenotypic spectrum.ResultsOur findings revealed that both polygenic risk and damaging DNVs contribute to an increased risk for ASD, with females exhibiting higher genetic burdens than males. ASD probands that carry damaging DNVs in ASD risk genes showed reduced polygenic risk. The effects of polygenic risk and damaging DNVs on autism broad phenotypes were inconsistent; probands with higher polygenic risk exhibited improvement in some behaviors, such as adaptive/cognitive behaviors, while those with damaging DNVs exhibited more severe phenotypes. Siblings with higher polygenic risk and damaging DNVs tended to have higher scores on broader autism phenotypes. Females exhibited more severe cognitive and behavioral problems compared to males among both ASD probands and siblings. The combination of polygenic risk, damaging DNVs in ASD risk genes, and sex explained 1–4% of the total liability of adaptive/cognitive behavior measurements.ConclusionOur study revealed that the risk for ASD and the autism broad phenotypes likely arises from a combination of common polygenic risk, damaging DNVs (including those in ASD risk genes), and sex.