Purpose
To investigate local and global efficiency changes characterized by small-world properties based on resting-state functional MRI, such as centrality and clustering coefficient, in mild traumatic brain injury (MTBI) patients; and to associate these findings with axonal injury as measured by diffusion tensor imaging (DTI) as well as with post-concussive symptom (PCS).
Materials and Methods
Thirty patients (mean age 35 ± 13 years) with clinically defined MTBI and 45 age-matched healthy controls (mean age 37 ± 10 years) participated in the experiments. Resting-state functional MRI was performed using gradient echo planar imaging sequence with 3 Tesla MRI scanner to obtain functional small-world networks. Out of all participants, 20 MTBI patients and 20 controls had available DTI data with three b-values (0, 500, 1000) s/mm2 and 30 directions for diffuse axonal injury analyses.
Results
Compared with controls, MTBI patients showed lower relative betweenness centrality (P = 0.01), but significantly higher clustering coefficient (P = 0.04), and these two metrics correlated negatively in patients (r = −0.77; P < 0.001). Regions with lower betweenness centrality (e.g., frontal and occipital) corresponded with the regions of reduced FA in patients, while global FA reduction correlated with betweenness centrality (r = 0.48; P = 0.03) and clustering coefficient (r = −0.46; P = 0.04) in MTBI patients. In addition, there was significantly higher thalamocortical connectivity that correlated with clustering coefficient (r = 0.39; P = 0.03) in patients. Also, patients with higher clustering coefficient tended to have less PCS score with negative correlation (r = −0.4; P = 0.04).
Conclusion
Our results demonstrated significant functional small-world properties changes in patients with MTBI, and suggest decreased global efficiency, possibly due to diffuse axonal injury and local network upregulation including increased thalamo-cortical connectivity.