Astrocytes dynamically interact with neurons to regulate synaptic transmission. Although the gap junction proteins connexin 30 (Cx30) and connexin 43 (Cx43) mediate the extensive network organization of astrocytes, their role in synaptic physiology is unknown. Here we show, by inactivating Cx30 and Cx43 genes, that astroglial networks tone down hippocampal synaptic transmission in CA1 pyramidal neurons. Gap junctional networking facilitates extracellular glutamate and potassium removal during synaptic activity through modulation of astroglial clearance rate and extracellular space volume. This regulation limits neuronal excitability, release probability, and insertion of postsynaptic AMPA receptors, silencing synapses. By controlling synaptic strength, connexins play an important role in synaptic plasticity. Altogether, these results establish connexins as critical proteins for extracellular homeostasis, important for the formation of functional synapses.
hippocampus | neuroglial interactionsA strocytes, elements of the tripartite synapse, integrate and modulate neuronal excitability, synaptic transmission, and plasticity (1). Up to now the involvement of astrocytes in central functions has mostly been considered to result from the activity of individual astrocytes. However, a typical feature of astrocytes is their network organization provided by numerous gap junction channels formed by two main connexin (Cx) subunits, Cx43, present from embryonic to adult stages, and Cx30, expressed later in development (2). Gap junction channels consist of two hemichannels, each composed of six Cx subunits that align between adjacent cells to form intercellular channels. They mediate direct intercellular communication involving exchange of ions (electrical coupling) and small signaling molecules (biochemical coupling), with a molecular weight up to 1.5 kDa. Intercellular trafficking and redistribution of neuroactive substances, such as ions and neurotransmitters, through gap junction channels during neuronal activity suggest that astroglial network communication plays a role in neuroglial interactions and neurotransmission. This hypothesis is supported by altered behavior in Cx30 and astrocyte-targeted Cx43 knockout mice (3), as well as by impairment in sensorimotor and spatial memory tasks in Cx43 and Cx30 double-knockout mice (4). In addition, these channels have recently been shown to be important for neuronal activity during pathological conditions, such as hypoglycemia (5) and epilepsy (6), by mediating nutrient transport and spatial potassium buffering, respectively. However, their role in basal neurotransmission and synaptic plasticity is unknown. Thus, the aim of this work was to determine whether and how the connectivity of astroglial networks contributes to basal synaptic transmission and plasticity. We here demonstrate that mice deficient for both astroglial Cx30 and Cx43 have increased hippocampal synaptic transmission and impaired long-term synaptic plasticity. These effects are due to decreased astroglial glutam...