Due to the absence of studies of local energy communities (LECs) where the grid is represented, it is very difficult to infer implications of increased LEC integration for the distribution grid as well as for the wider society. Therefore, this paper aims to investigate holistic modelling and simulation approaches of LECs. To conduct a quantifiable assessment of different control architectures, LEC types and market frameworks, a flexible and comprehensive LEC modelling and simulation approach is needed. Modelling LECs and the environment they operate in involves a holistic approach consisting of different layers: market, controller, and grid. The controller layer is relevant both for the overall energy management system of the LEC and the controllers of single components in a LEC. In this paper, the different LEC modelling approaches in the reviewed literature are presented, several multilayered concepts for LECs are proposed, and a case study is presented to illustrate a holistic simulation where the different layers interact.