In the complex and changing situation on the soccer field, players must always be aware of their teammates, opponents, and the position of the ball during the game, constantly updating and analyzing the strategic information of the opponent in order to make appropriate tactical decisions. This ability to track multiple objects at the same time is also a prerequisite for high-level soccer players to be able to react quickly and appropriately during the game. Therefore, it is essential to examine the attentional ability of soccer players in dynamic scenarios. This study compares soccer players’ performance in 2D planar and 3D virtual reality dynamic tracking tasks in two dimensions. They are correct tracking rate and tracking speed. This paper examines the tracking performance and spatial attention allocation characteristics of soccer players in different dynamic tracking tasks and the differences with the average college students by manipulating different types of 2D dynamic tracking tasks and incorporating a point detection paradigm. It was found that there were no differences in correct tracking and detection stimulus awareness between soccer players and college students in different 2D dynamic tracking tasks, showing consistency across populations. In terms of correct tracking rates, both soccer players and university students showed the highest correct tracking rates in the location MIT task, followed by the MOT task, and the worst in the identity MIT task. This indicates that the good dynamic attention ability of soccer players was not reflected in the above 2D dynamic tracking process. However, soccer players and college students showed consistent characteristics across populations in different dynamic tracking tasks. The results of detection stimulus awareness showed that soccer players and college students had the same trend of attention allocation between dynamic tracking tasks, i.e., more attention to the blank area of the screen and the target object and less attention to the distractor. This suggests that there was a distractor suppression effect between different dynamic tracking tasks.