This paper focuses on the leader-following consensus problem of discrete-time multi-agent systems subject to channel fading under switching topologies. First, a topology switching-based channel fading model is established to describe the information fading of the communication channel among agents, which also considers the channel fading from leader to follower and from follower to follower. It is more general than models in the existing literature that only consider follower-to-follower fading. For discrete multi-agent systems, the existing literature usually adopts time series or Markov process to characterize topology switching while ignoring the more general semi-Markov process. Based on the advantages and properties of semi-Markov processes, discrete semi-Markov jump processes are adopted to model network topology switching. Then, the semi-Markov kernel approach for handling discrete semi-Markov jumping systems is exploited and some novel sufficient conditions to ensure the leader-following mean square consensus of closed-loop systems are derived. Furthermore, the distributed consensus protocol is proposed by means of the stochastic Lyapunov stability theory so that the underlying systems can achieve ℋ∞ consensus performance index. In addition, the proposed method is extended to the scenario where the semi-Markov kernel of semi-Markov switching topologies is not completely accessible. Finally, a simulation example is given to verify the results proposed in this paper. Compared with the existing literature, the method in this paper is more effective and general.