To synthesize high-quality TS-1 zeolites with enhanced catalytic performance for 1-hexene epoxidation is highly attractive for meeting the increased need for sustainable chemistry. Herein, we report that a series of framework Ti-enriched TS-1 zeolites with high crystallinity can be effectively synthesized by the hydrothermal crystallization of a composite precursor composed of diol-based polymer (containing titanium and silicon) and tetrapropylammonium bromide (TPABr). The pre-addition of a certain amount of TPABr into the polymer-based precursor plays a very positive role in maintaining the high crystallinity and framework Ti incorporation rate of TS-1 zeolites under the premise that a relatively low concentration of tetrapropylammonium hydroxide (TPAOH) template is adopted in the following hydrothermal crystallization process. The condition-optimized TS-1 zeolite with a smaller particle size (300–500 nm) shows excellent catalytic activity, selectivity, and recyclability for the epoxidation of 1-hexene with H2O2 as an oxidant, which can achieve a 75.4% conversion of 1-hexene and a 99% selectivity of epoxide at a reaction temperature of 60 °C, which is much better than the TS-1 zeolites reported in the previous literature. The relatively small particle size of the resultant TS-1 crystals may enhance the accessibility of the catalytically active framework Ti species to reagents, and the absence of non-framework Ti species, like anatase TiO2, and low polymerized six-coordinated Ti species could effectively inhibit the ineffective decomposition of H2O2 and the occurrence of side reactions, leading to an improvement in the catalytic efficiency for the epoxidation of 1-hexente with H2O2.