Conservation of threatened tree species requires basic information on growth rates and ages. This information is lacking for many species, but can be obtained relatively easily from tree ring analysis. We studied four threatened Vietnamese species: three conifers from highelevation forests (Calocedrus macrolepis, Dacrydium elatum and Pinus kwangtungensis) and one broad-leaved species from lowland forest (Annamocarya sinensis). We collected increment cores from remnant populations in protected areas and measured ring width. We built chronologies and found significant correlations with rainfall (all species) and temperature (two species), indicating that rings were formed annually. Diameter-age trajectories showed that species reached reproductive size at 60-80 years. Maximum observed ages were 128-229 years. Some species showed large variation in long-term growth rates among individuals, which was partially explained by strong persistence of growth differences. We also assessed whether growth rates changed over time. For certain size categories in some species, we found higher recent growth rates of juvenile trees compared to those in the distant past. This shift requires a cautious interpretation, but is consistent with a CO 2 fertilization effect. For other size categories, we found contrasting results: extant large trees had higher growth rates as small juveniles compared to extant small trees. Such correlations, which we found for all species, suggest a 'juvenile selection effect': the preferential survival of fast-growing juveniles to the canopy. Information on ages, historical growth rates and juvenile selection effect is relevant for the planning of conservation actions.