Hydrogen and carbon monoxide over-equilibria have been found computationally in kinetic dependencies of methane-reforming catalytic reactions (steam and dry reforming) using the conditions of the conservatively perturbed equilibrium (CPE) phenomenon, i.e., at the initial equilibrium concentration of hydrogen or carbon monoxide. The influence of the pressure, temperature, flow rate and composition of the initial mixture on the position of the CPE point (the extremum point) was investigated over a wide domain of parameters. The CPE phenomenon significantly increases the product concentration (H2 and CO) at the reactor length, which is significantly less than the reactor length required to reach equilibrium. The CPE point is interpreted as the “turning point” in kinetic behaviour. Recommendations on temperature and pressure regimes are different from the traditional ones related to Le Chatelier’s law. The obtained results provide valuable information on optimal reaction conditions for complex reversible chemical transformations, offering potential applications in chemical engineering processes.