Understanding the evolution of deuterostome nervous systems has been complicated by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/ echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.
KEY WORDS: Cephalochordate, Deuterostomes, Echinoderm, Hemichordate, Nervous system evolution
IntroductionDeuterostomes include at least the Chordata (vertebrates, tunicates and cephalochordates) and the Ambulacraria (echinoderms and hemichordates). The enigmatic Xenoturbellida has been placed either basally in the deuterostomes or together with acoel flatworms as the Xenocoelomorpha -the sister group of the Ambulacraria. Alternatively, the Xenocoelomorpha have been placed basal to the bilateria (reviewed in Achatz et al., 2013). Xenoturbella has a very simple body plan with a nerve net and is thought to have lost a number of ancestral features (Philippe et al., 2011). Therefore, it is unclear whether it is at all relevant to the evolution of deuterostome nervous systems. However, there is no question that echinoderms and hemichordates are deuterostomes. In most phylogenetic analyses, Ambulacraria are the sister group of the chordates (Blair and Hedges, 2005; Delsuc et al., 2008; Edgecombe et al., 2011). However, a recent analysis based on 586 nuclear genes places cephalochordates as the sister group of the Ambulacraria with high bootstrap support and cephalochordates plus Ambulacraria as the sister group of tunicates plus vertebrates (Moroz et al., 2014). Because the nervous systems of echinoderms, hemichordates and chordates are so very different, it has been controversial whether the ancestral deuterostome had a longitudinal nerve cord or a nerve net or a combination of both.Several schemes for the evolution of deuterostome nervous systems have focused on the possible contribution of the larval REVIEW Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.*Author for correspondence (lzholland@ucsd.edu)...