Two small viral proteins (DGBp1 and DGBp2) have been proposed to act in a concerted manner to aid intra- and intercellular trafficking of carmoviruses though the distribution of functions and mode of action of each protein partner are not yet clear. Here we have confirmed the requirement of the DGBps of Pelargonium flower break virus (PFBV), p7 and p12, for pathogen movement. Studies focused on p12 have shown that it associates to cellular membranes, which is in accordance to its hydrophobic profile and to that reported for several homologs. However, peculiarities that distinguish p12 from other DGBps2 have been found. Firstly, it contains a leucine zipper-like motif which is essential for virus infectivity in plants. Secondly, it has an unusually long and basic N-terminal region that confers RNA binding activity. The results suggest that PFBV p12 may differ mechanistically from related proteins and possible roles of PFBV DGBps are discussed.