This paper addresses, from engineering point of view, issues in seismic risk assessment. It is more a discussion on the current practice, emphasizing on the multiple uncertainties and weaknesses of the existing methods and approaches, which make the final loss assessment a highly ambiguous problem. The paper is a modest effort to demonstrate that, despite the important progress made the last two decades or so, the common formulation of hazard/risk based on the sequential analyses of source (M, hypocenter), propagation (for one or few IM) and consequences (losses) has probably reached its limits. It contains so many uncertainties affecting seriously the final result, and the way that different communities involved, modellers and end users are approaching the problem is so scattered, that the seismological and engineering community should probably re-think a new or an alternative paradigm.
IntroductionSeismic hazard and risk assessments are nowadays rather established sciences, in particular in the probabilistic formulation of hazard. Long-term hazard/risk assessments are the base for the definition of long-term actions for risk mitigation. However, several recent events raised questions about the reliability of such methods. The occurrence of relatively "unexpected" levels of hazard and loss (e.g., Emilia, Christchurch, Tohoku) and the continuous increase of hazard with time, basically due to the increase of seismic data, and the increase of exposure, make loss assessment a highly ambiguous problem.Existing models present important discrepancies. Sometimes such discrepancies are only apparent, since we do not always compare two "compatible" values. There