As one of the antisurge techniques, the adjusting scheme of VSV under off-design conditions has a significant impact on the performance of gas turbines. In this paper, the one-dimensional characteristic of the compressor calculation program is embedded into the zero-dimensional overall gas turbine model, which replaces the original compressor characteristic module. Based on the assembling relationship of the actual components of the marine gas turbine, the architecture of the modular model library is designed, and an integrated simulation platform of marine gas turbine is developed by using MATLAB/GUI software. The influence of the first 3 rows of variable stator vanes of the 9-stage axial compressor working alone on the performance of the compressor at different speeds and different angles was analyzed by the HARIKA compressor characteristic calculation program. Taking the economics and stability of the gas turbine as the optimization objective, the optimization of the first three-stage stator vanes regulation schemes under different working conditions was carried out. The steady-state performance parameters under each working condition of gas turbine of power generation with or without variable stator vane mode were calculated. The study results can provide references for the adjusting scheme of VSV under gas turbine off-design conditions operating process.