We propose and study the properties of a non-linear electrodynamics that emerges inspired on the physics of Dirac materials. This new electrodynamic model is an extension of the one-loop corrected non-linear effective Lagrangian computed in the work of ref. [3]. In the particular regime of a strong magnetic and a weak electric field, it reduces to the photonic non-linear model worked out by the authors of ref. [3]. We pursue our investigation of the proposed model by analyzing properties of the permittivity and permeability tensors, the energy-momentum tensor and wave propagation effects in presence of a uniform magnetic background. It is shown that the electrodynamics here presented exhibits the vacuum birefringence phenomenon. Subsequently, we calculate the lowestorder modifications to the interaction energy, considering still the presence of a uniform external magnetic field. Our analysis is carried out within the framework of the gauge-invariant but pathdependent variables formalism. The calculation reveals a screened Coulomb-like potential with an effective electric charge that runs with the external magnetic field but, as expected for Dirac-type materials, the screening disappears whenever the external magnetic field is switched off.