Mucilage, a polysaccharide‐containing hydrogel, is hypothesized to play a key role in the rhizosphere as a self‐organized system because it may vary its supramolecular structure with changes in the surrounding solution. However, there is currently limited research on how these changes are reflected in the physical properties of real mucilage. This study examines the role of solutes in maize root, wheat root, chia seed, and flax seed mucilage in relation to their physical properties. Two purification methods, dialysis and ethanol precipitation, were applied to determine the purification yield, cation content, pH, electrical conductivity, surface tension, viscosity, transverse 1H relaxation time, and contact angle after drying of mucilage before and after purification. The two seed mucilage types contain more polar polymers that are connected to larger assemblies via multivalent cation crosslinks, resulting in a denser network. This is reflected in higher viscosity and water retention ability compared to root mucilage. Seed mucilage also contains fewer surfactants, making them better wettable after drying compared to the two root mucilage types. The root mucilage types, on the other hand, contain smaller polymers or polymer assemblies and become less wettable after drying. However, wettability not only depends on the amount of surfactants but also on their mobility, as well as the strength and mesh size of the network structure. The changes in physical properties and cation composition observed after ethanol precipitation and dialysis suggest that the polymer network of seed mucilage is more stable and specialized in protecting the seeds from unfavorable environmental conditions. In contrast, root mucilage is characterized by fewer cationic interactions and its network relies more on hydrophobic interactions. This allows root mucilage to be more flexible in responding to changing environmental conditions, facilitating nutrient and water exchange between root surfaces and the rhizosphere soil.