Based on an actual ultra-high voltage (UHV) substation, a finite element (FE) model for a high-voltage (HV) bushing, arrester, and down lead transmission line (DLTL) system was built using ANSYS software. The dynamic responses of the system under different seismic intensities were analyzed and compared with those of the corresponding single bushing and arrester. On this basis, the coupling vibration influence of the upper DLTL on the responses of the HV bushing and arrester is discussed. The results indicate that the DLTL adversely affects the responses of the HV bushing and arrester under seismic loading. As the seismic intensity increases, the structural displacements at the top of the HV bushing and arrester increase, accompanied by a reduction in the geometric length redundancy of the DLTL, resulting in a mutual pulling effect between the HV bushing and the arrester and the quick amplification of their respective dynamic responses in a nonlinear form. Under the action of an earthquake with a peak ground acceleration (PGA) of 0.4 g, the maximum stresses at the roots of the HV bushing and the arrester in the system separately increase by approximately 13.02% and 7.80% compared to the corresponding single HV bushing and the arrester. Overall, a geometric length redundancy of at least 200 mm in the DLTL in engineering design is recommended.