For expectation functions on metric spaces, we provide sufficient conditions for epi-convergence under varying probability measures and integrands, and examine applications in the area of sieve estimators, mollifier smoothing, PDE-constrained optimization, and stochastic optimization with expectation constraints. As a stepping stone to epi-convergence of independent interest, we develop parametric Fatou's lemmas under mild integrability assumptions. In the setting of Suslin metric spaces, the assumptions are expressed in terms of Pasch-Hausdorff envelopes. For general metric spaces, the assumptions shift to semicontinuity of integrands also on the sample space, which then is assumed to be a metric space.