2020
DOI: 10.1007/s00707-019-02596-4
|View full text |Cite
|
Sign up to set email alerts
|

Constant electric bias dependence of wave propagation in a rotating piezoelectric crystal

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 36 publications
0
3
0
Order By: Relevance
“…We introduce the Coriolis force K i Kibadbreak=2εirkΩrukt$$\begin{equation} {K}_i = 2{\varepsilon }_{irk}{\Omega }_r\frac{{\partial {u}_k}}{{\partial t}} \end{equation}$$to the piezoelectric motion equation with constitutive equations [11–13] and obtain Coijkluk,li+eokijφ,ki=ρ2ujt2+2εjiknormalΩiuktoijϕ,ji+eoikluk,li=0$$\begin{equation} \def\eqcellsep{&}\begin{array}{l} {\mathop C\limits^{\mathrm{o}} }_{ijkl}{u}_{k,li} + {\mathop e\limits^o }_{kij}{\varphi }_{,ki} = \rho \left[ {\frac{{{\partial }^2{u}_j}}{{\partial {t}^2}} + 2{\varepsilon }_{jik}{\Omega }_i\frac{{\partial {u}_k}}{{\partial t}}} \right]\\ - {\mathop \in \limits^o }_{ij}{\phi }_{,ji} + {\mathop e\limits^o }_{ikl}{u}_{k,li} = 0 \end{array} \end{equation}$$where ρ represents mass density, t time, u j displacement vector, ϕ electric potential, εjik${\varepsilon }_{jik}$ the Levi‐Civita tensor. normalΩi${\Omega }_i$ is rotation speed vector whose unit is the same as wave frequency ω, so the dimensionless quantity of rotation ratio η = Ω i /ω is used in the following.…”
Section: Problem Formulationmentioning
confidence: 99%
See 2 more Smart Citations
“…We introduce the Coriolis force K i Kibadbreak=2εirkΩrukt$$\begin{equation} {K}_i = 2{\varepsilon }_{irk}{\Omega }_r\frac{{\partial {u}_k}}{{\partial t}} \end{equation}$$to the piezoelectric motion equation with constitutive equations [11–13] and obtain Coijkluk,li+eokijφ,ki=ρ2ujt2+2εjiknormalΩiuktoijϕ,ji+eoikluk,li=0$$\begin{equation} \def\eqcellsep{&}\begin{array}{l} {\mathop C\limits^{\mathrm{o}} }_{ijkl}{u}_{k,li} + {\mathop e\limits^o }_{kij}{\varphi }_{,ki} = \rho \left[ {\frac{{{\partial }^2{u}_j}}{{\partial {t}^2}} + 2{\varepsilon }_{jik}{\Omega }_i\frac{{\partial {u}_k}}{{\partial t}}} \right]\\ - {\mathop \in \limits^o }_{ij}{\phi }_{,ji} + {\mathop e\limits^o }_{ikl}{u}_{k,li} = 0 \end{array} \end{equation}$$where ρ represents mass density, t time, u j displacement vector, ϕ electric potential, εjik${\varepsilon }_{jik}$ the Levi‐Civita tensor. normalΩi${\Omega }_i$ is rotation speed vector whose unit is the same as wave frequency ω, so the dimensionless quantity of rotation ratio η = Ω i /ω is used in the following.…”
Section: Problem Formulationmentioning
confidence: 99%
“… 2. As can be seen from Figure 4, the effects of positive and negative electric biases on Rayleigh wave velocity are different as similar as the bulk waves [11]. The positive bias can amplify the wave velocity in contrast to the negative bias.…”
Section: Examplementioning
confidence: 99%
See 1 more Smart Citation