“…Hence H GL 2 (t 1 , t 2 , z) − H GL 2 ((F ′ 3 ) δ , t 1 , t 2 , z) = (t 2 1 − t 2 2 )t 4 1 t 2 2 z 4 + · · · which suggests that there is a relation of bidegree (6, 2) and a generator of bidegree (4,4). Continuing in the same way, we have found one more generator 5 | m j , n j , p j , q j , r j ≥ 0, j = 1, 2, 3, 4} ∪{c 5 f m 1 f p 3 f q 4 f r 5 | m, p, q, r ≥ 0}.…”