The future of materials chemistry will be defined by
our ability
to precisely arrange components that have considerably larger dimensions
and more complex compositions than conventional molecular or macromolecular
building blocks. However, exerting structural and constitutional control
in the assembly of nanoscale entities presents a considerable challenge.
Dynamic covalent nanoparticles are emerging as an attractive category
of reaction-enabled solution-processable nanosized building block
through which the rational principles of molecular synthetic chemistry
can be extended into the nanoscale. From a mixture of two hydrazone-based
dynamic covalent nanoparticles with complementary reactivity, specific
molecular instructions trigger selective assembly of intimately mixed
heteromaterial (Au–Pd) aggregates or materials highly enriched
in either one of the two core materials. In much the same way as complementary
reactivity is exploited in synthetic molecular chemistry, chemospecific
nanoparticle-bound reactions dictate building block connectivity;
meanwhile, kinetic regioselectivity on the nanoscale regulates the
detailed composition of the materials produced. Selectivity, and hence
aggregate composition, is sensitive to several system parameters.
By characterizing the nanoparticle-bound reactions in isolation, kinetic
models of the multiscale assembly network can be constructed. Despite
ignoring heterogeneous physical processes such as aggregation and
precipitation, these simple kinetic models successfully link the underlying
molecular events with the nanoscale assembly outcome, guiding rational
optimization to maximize selectivity for each of the three assembly
pathways. With such predictive construction strategies, we can anticipate
that reaction-enabled nanoparticles can become fully incorporated
in the lexicon of synthetic chemistry, ultimately establishing a synthetic
science that manipulates molecular and nanoscale components with equal
proficiency.