Sheet forming of unidirectional prepregs is gaining increased interest as a cost efficient alternative manufacturing method. Its potential lies within the use of automatically and efficiently stacked flat prepregs, which in a second step can be formed. A successful forming requires understanding of the properties of the uncured material. Here, the in-plane deformation behaviour of two different unidirectional thermoset prepregs is investigated. Experimental measurements are performed, showing the importance of stacking sequence and its effect on the forming behaviour of stacked prepreg. Finite element models are developed, using material models calibrated from bias extension tests and interlaminar friction tests. The method developed can be used to predict the reaction force and fibre reorientation during in-plane forming of thermoset prepreg, for one of the considered material systems. Further, it enables prediction of the effect of stacking sequence, which is promising for future full-scale forming simulations.