The Free-piston linear generator (FPLG) is a novel energy converter which can generate electrical energy and is regarded as a potential technology for solving the restriction of the short driving range of electric vehicles. Getting rid of the crank and flywheel mechanism, FPLG obtains some advantages of a variable compression ratio, compact size, and highly-efficient power generation. Linear electric machine (LEM) design and piston motion control are two key technologies of FPLG. However, they are currently the main obstacles to the favorable performance of FPLG. LEM being used to drive the piston motion or generate electric energy is an integrated design including a motor/generator. Various types of LEMs are investigated, and suitable application scenarios based on advantages and disadvantages are discussed. The FPLG's controller is used to ensure stable operation and highly-efficient output. However, cycle-to-cycle variations of the combustion process and motor/generator switching make it difficult to improve the performance of the piston motion control. Comments on the advantages and disadvantages of different piston motion control methods are also given in this paper.The piston moves freely between TDC and bottom dead center (BDC), and its motion is determined by the resultant force that is acting upon it, including gas pressure force, electro-magnetic force, and rebound force [8][9][10]. The piston motion must be controlled by an electronic control system-an electronic crankshaft, which is an integrated control of combustion parameters or control variables of the LEM and rebound devices [5]. Moreover, there are cycle-to-cycle variations and periodic large disturbances during the combustion process. As a result, piston motion control is still the biggest challenge of FPLG [11]. Besides, LEM is not only used as a power output unit but also a control unit for adjusting the movement of the piston. For the FPLG, LEM requires high reliability, high precision, high efficiency, and so on. Various structures of LEM designed by many teams around the world have been investigated, but none of these meet all of the requirements due to the short stroke, high frequency, and high acceleration.In order to lucubrate the current existing problems, this paper reviews the key technologies of LEM design and FPLG motion control. Firstly, several basic structures of FPLG are introduced, and both their advantages and disadvantages are analyzed. Afterwards, according to the different types of structure, corresponding advantages and disadvantages of LEMs are presented. With respect to the existing LEMs, they are classified according to the different flux path and topology structures in the third section. Finally, different starting methods are introduced based on the FPLG's structure. In terms of power generation stage, piston motion control strategies are divided into three forms and introduced based on their control variables. They include three categories: active combustion parameters control, active LEM control, and the mixed cont...