This paper focuses on the constrained optimality problem (COP) of first passage discrete-time Markov decision processes (DTMDPs) in denumerable state and compact Borel action spaces with multi-constraints, state-dependent discount factors, and possibly unbounded costs. By means of the properties of a so-called occupation measure of a policy, we show that the constrained optimality problem is equivalent to an (infinite-dimensional) linear programming on the set of occupation measures with some constraints, and thus prove the existence of an optimal policy under suitable conditions. Furthermore, using the equivalence between the constrained optimality problem and the linear programming, we obtain an exact form of an optimal policy for the case of finite states and actions. Finally, as an example, a controlled queueing system is given to illustrate our results.