Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Face annotation, a modern research topic in the area of image processing, has useful real-life applications. It is a really difficult task to annotate the correct names of people to the corresponding faces because of the variations in facial appearance. Hence, there still is a need for a robust feature to improve the performance of the face annotation process. In this work, a novel approach called the Deep Gabor-Oriented Local Order Features (DGOLOF) for feature representation has been proposed, which extracts deep texture features from face images. Seven recently proposed face annotation methods are considered to evaluate the proposed deep texture feature under uncontrolled situations like occlusion, expression changes, illumination and pose variations. Experimental results on the LFW, IMFDB, Yahoo and PubFig databases show that the proposed deep texture feature provides efficient results with the Name Semantic Network (NSN)-based face annotation. Moreover, it is observed that the proposed deep texture feature improves the performance of face annotation, regardless of all the challenges involved.
Face annotation, a modern research topic in the area of image processing, has useful real-life applications. It is a really difficult task to annotate the correct names of people to the corresponding faces because of the variations in facial appearance. Hence, there still is a need for a robust feature to improve the performance of the face annotation process. In this work, a novel approach called the Deep Gabor-Oriented Local Order Features (DGOLOF) for feature representation has been proposed, which extracts deep texture features from face images. Seven recently proposed face annotation methods are considered to evaluate the proposed deep texture feature under uncontrolled situations like occlusion, expression changes, illumination and pose variations. Experimental results on the LFW, IMFDB, Yahoo and PubFig databases show that the proposed deep texture feature provides efficient results with the Name Semantic Network (NSN)-based face annotation. Moreover, it is observed that the proposed deep texture feature improves the performance of face annotation, regardless of all the challenges involved.
Background: Face annotation is the naming procedure to assign the correct name of a person who has emerged on an image. Objective: The main objective of this paper was to compare and evaluate six feature extraction techniques for face annotation under real-time challenging images and to find the best suitable feature for face annotation. Method: From literature review, it has been observed that Name Semantic Network (NSN) outperforms other annotation methods for various unconditioned images as well as ambiguous tags. However, the NSN’s performance can differ with various feature extraction techniques. Hence, its success is influenced by the feature extraction techniques that are used. Therefore, in this work, the NSN’s performance is experimented and evaluated with various feature extraction methods such as the Discrete Cosine Transform Local Binary Pattern (DCT-LBP), Discrete Fourier Transform Local Binary Pattern (DFT-LBP), Local Patterns of Gradients (LPOG), Gist, Local Order-constrained Gradient Orientations (LOGO) and Convolutional Neural Networks (CNNs) deep features. Results: Different feature extraction approaches demonstrate variations in performance with respect to a range of difficulties in face annotation using the Yahoo, LFW and IMFDB databases. The experimental results show that the deep feature method can achieve better recognition rate other than texture features. It confronts several issues in the presentation of a face in an image and produces better results. Conclusion: It is concluded that the CNNs deep feature is the best feature extraction technique that offers enhanced performance for face annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.