The essence of this work, which is an extension of the author’s previous research, is an analysis of computational intelligence algorithms that the support safe control of an autonomous object moving in a large group of other autonomous objects. Linear and dynamic programming methods with neural constraints on the process state, as well as positional and matrix game methods, were used to synthesize computational algorithms for the safe trajectory of one’s own object. The aim of the comparative analysis of intelligent computational methods for the safe trajectory of an object was to show, through their use, the possibility of taking into account the risk of collision resulting from both the degree of cooperation of objects while observing traffic laws and the impact of the environment in the form of visibility and the complexity of the situation. Simulation tests of the algorithms were carried out on the example of a real navigation situation of several dozen objects passing each other at sea.