Photoelectrochemical (PEC) water splitting has received growing attention as a potential pathway to replace fossil fuels and produce a clean, renewable, and sustainable source of fuel. To achieve overall water splitting and the associated production of solar fuels, complex devices are needed to efficiently capture light from the sun, separate photogenerated charges, and catalyze reduction and oxidation reactions. To date, the highest performing solar fuels devices rely on multi-component systems, which introduce interfaces that can be associated with further performance loss due to thermodynamic and kinetic considerations. In this review, we identify several of the most important interfaces used in PEC water splitting, summarize methods to characterize them, and highlight approaches to mitigating associated loss mechanisms.