In this study, the amelogenin-derived peptide, TVH-19, which has been confirmed to promote mineralization, was evaluated to derive its potential to induce dentinal tubule occlusion. The binding capability of fluorescein isothiocyanate (FITC)-labeled TVH-19 to the demineralized dentin surface was analyzed by confocal laser scanning microscopy (CLSM). Additionally, the sealing function of the peptide was studied through the remineralization of demineralized dentin in vitro. The adsorption results showed that TVH-19 could bind to the hydroxyapatite and demineralized dentin surfaces, especially to periodontal dentin. Scanning electron microscopy analysis further revealed that TVH-19 created mineral precipitates. The plugging rate in the TVH-19 group was higher than that in the PBS group. Moreover, energy-dispersive X-ray spectroscopy (EDX) results indicated that the calcium/phosphorus (Ca/P) ratio of the new minerals induced by TVH-19 was close to that of the hydroxyapatite. Attenuated total internal reflection-Fourier transform infrared (ATR-FTIR) spectrometry and X-ray diffraction (XRD) results indicated that the hydroxyapatite crystals formed via remineralization elongated the axial growth and closely resembled the natural dentin components. These findings indicate that TVH-19 can effectively promote dentin sealing by binding to the periodontal dentin, promoting mineral deposition, and reducing the space between the dentin tubules.