Ionosphere is the partly ionised layer of Earth's atmosphere caused by solar radiation and particle precipitation. The ionisation can start from 60 km and extend up to 1000 km altitude. Often the interest in ionosphere is in the quantity and distribution of the free electrons. The electron density is related to the ionospheric refractive index and thus sufficiently high densities affect the electromagnetic waves propagating in the ionised medium. This is the reason for HF radio signals being able to reflect from the ionosphere allowing broadcast over the horizon, but also an error source in satellite positioning systems. The ionospheric electron density can be studied e.g. with specific radars and satellite in situ measurements. These instruments can provide very precise observations, however, typically only in the vicinity of the instrument. To make observations in regional and global scales, due to the volume of the domain and price of the aforementioned instruments, indirect satellite measurements and imaging methods are required. Mathematically ionospheric imaging suffers from two main complications. First, due to very sparse and limited measurement geometry between satellites and receivers, it is an ill-posed inverse problem. The measurements do not have enough information to reconstruct the electron density and thus additional information is required in some form. Second, to obtain sufficient resolution, the resulting numerical model can become computationally infeasible. In this thesis, the Bayesian statistical background for the ionospheric imaging is presented. The Bayesian approach provides a natural way to account for different sources of information with corresponding uncertainties and to update the estimated ionospheric state as new information becomes available. Most importantly, the Gaussian Markov Random Field (GMRF) priors are introduced for the application of ionospheric imaging. The GMRF approach makes the Bayesian approach computationally feasible by sparse prior precision matrices. The Bayesian method is indeed practicable and many of the widely used methods in ionospheric imaging revert back to the Bayesian approach. Unfortunately, the approach cannot escape the inherent lack of information provided by the measurement setup , and similarly to other approaches, it is highly dependent on the additional subjective information required to solve the problem. It is here shown that the use of GMRF provides a genuine improvement for the task as this subjective information can be understood and described probabilistically in a meaningful and physically interpretative way while keeping the computational costs low. Publishing unit Space Research and Observation Technologies Classification (UDC) Keywords 519.676, 551.510.413.5 List of publications This thesis consists of an introductory part and the following original publications: