Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics
James Mitchell,
Aubrey Poon,
Dan Zhu
Abstract:SummaryQuantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two‐step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the “data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in the United States demonstrate the flexibility of the nonpa… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.