Abstract:We propose a systematic construction of signed harmonic functions for discrete Laplacian operators with Dirichlet conditions in the quarter plane. In particular, we prove that the set of harmonic functions is an algebra generated by a single element, which conjecturally corresponds to the unique positive harmonic function. Contents 1. Introduction and main results 1 2. Study of the kernel 9 3. Boundary value problems for the generating functions 15 4. Proof of our main results (Theorems 1 and 2) 18 5. Various … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.