2021
DOI: 10.48550/arxiv.2105.03252
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Constructing Initial Algebras Using Inflationary Iteration

Abstract: An old theorem of Adámek constructs initial algebras for sufficiently cocontinuous endofunctors via transfinite iteration over ordinals in classical set theory. We prove a new version that works in constructive logic, using "inflationary" iteration over a notion of size that abstracts from limit ordinals just their transitive, directed and well-founded properties. Borrowing from Taylor's constructive treatment of ordinals, we show that sizes exist with upper bounds for any given signature of indexes. From this… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?