2021
DOI: 10.1088/1674-1056/abd92e
|View full text |Cite
|
Sign up to set email alerts
|

Constructing reduced model for complex physical systems via interpolation and neural networks*

Abstract: The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate the nonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation before approximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic mode decomposition (DMD), respectively, so as to obtain a m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?