Cross-linking is widely accepted as an effective method to improve the mechanical strength and durability of phosphoric acid (PA) doped polybenzimidazole (PBI) membranes. However, the cross-linked membranes generally exhibit compromised overall performance since their compact network structures decrease the free volumes of membranes, leading to poor proton conductivity. In this study, a locally high-density cross-linked polybenzimidazole network based on pillar[5]arene bearing multiple alkyl bromide is constructed for the first time to achieve high proton conductivity, desired mechanical properties, and excellent fuel cell performance. The pillar[5]arene-crosslinked network considerably enhances the mechanical strength of membrane (14.6 MPa), particularly with high PA uptake, and provides loose PBI chain segment packing to retain PA (315.9%). Surprisingly, the pillar[5]arene-crosslinked PBI membrane displays a high-power density of 1,084.1 mW cm −2 at 180 °C and 0.6 mg cm −2 Pt loading without backpressure and humidification, that is the highest value reported in cross-linked membranes for high-temperature proton exchange membrane fuel cells.