Video-based eye trackers have enabled major advancements in our understanding of eye movements through their ease of use and their non-invasiveness. One necessity to obtain accurate eye recordings using video-based trackers is calibration. The aim of the current study was to determine the feasibility and reliability of alternative calibration methods for scenarios in which the standard visual-calibration is not possible. Fourteen participants were tested using the EyeLink 1000 Plus video-based eye tracker, and each completed the following 5-point calibration methods: 1) standard visual-target calibration, 2) described calibration where participants were provided with verbal instructions about where to direct their eyes (without vision of the screen), 3) proprioceptive calibration where participants were asked to look at their hidden finger, 4) replacement calibration, where the visual calibration was performed by 3 different people; the calibrators were temporary substitutes for the participants. Following calibration, participants performed a simple visually-guided saccade task to 16 randomly presented targets on a grid. We found that precision errors were comparable across the alternative calibration methods. In terms of accuracy, compared to the standard calibration, non-visual calibration methods (described and proprioception) led to significantly larger errors, whilst the replacement calibration method had much smaller errors. In conditions where calibration is not possible, for example when testing blind or visually impaired people who are unable to foveate the calibration targets, we suggest that using a single stand-in to perform the calibration is a simple and easy alternative calibration method, which should only cause a minimal decrease in accuracy.