The exploration of ecological security patterns (ESPs) can help people find those areas that are in urgent need of restoration, which is an effective way to realize ecological protection. It is of utmost significance for promoting regional sustainable development to construct ESP and put forward sub-regional optimization suggestions based on the supply and demand ratio of ecosystem services (ESs). In this paper, we assessed the level of supply and demand for five ESs based on multi-source data in 2020 with the help of InVEST, ArcGIS, and IUEMS. Based on the results of supply and demand, we calculated the supply and demand ratio of ESs and extracted the ecological source areas (ESAs) on this basis. Then, we used the Linkage Mapper tool to construct the ESP based on the principle of the minimum cumulative resistance (MCR) model and circuit theory in the Chengdu–Chongqing economic circle (CCEC). Our results indicated that there were apparent spatial differences in the supply and demand of five ESs. There were 35 ESAs in the ESP network, covering an area of about 7914 km2, and most of their land use types were woodland. The CCEC was interconnected by a network of 91 ecological corridors (ECs), spanning a total length of approximately 10,701 km. From the ECs, we extracted 29 ecological pinch points (EPPs) and 16 ecological barrier points (EBPs), which each accounted for about 0.3% of the planned area of the CCEC. Finally, we divided the ecological spaces into four types and put forward the corresponding optimization suggestions. Among them, the proportion of ecological restoration area was 7.7%, which was located in Chengdu City, northwest of the study area. The findings of this paper can give some theoretical guidance and serve as a reference for making decisions in the pursuit of ecological civilization in this region.