In the construction process of beam string structures, the environmental effect and corresponding mechanical properties of the structure are complex. The problem of the misjudgment of structural safety performance caused by the uncertainty of a structural mechanical parameter analysis under various factors needs to be solved. In this study, a method for capturing key components and an intelligent safety analysis of beam string structures based on digital twins (DTs) was proposed. Combined with the characteristics of DTs mapping feedback, a component capture and security analysis framework was formed. Driven by twin framework, multi-source data for structural safety analysis were obtained and the parameter association mechanism established. Considering the space-time evolution and the interaction between the virtual and real elements of the construction process, a multidimensional model was established. Driven by the Dempster–Shafer (D–S) evidence theory, the fusion of structural mechanics parameters was carried out. The safety of the structure was analyzed intelligently by capturing key structural components, thereby providing a basis for the safety maintenance of the structure. The integration of DTs modeling and multi-source data improves the accuracy and intelligence of structural construction safety analysis. In the analysis process, capturing the key components of the structure is the core step. Taking the construction process of a string supported beam roof (symmetrical structure) in a convention and exhibition center as an example, the outlined research method was applied. Based on DTs and D–S evidence theory, the variation degree of mechanical parameters of various components under temperature was determined. By comprehensively investigating the changes of various mechanical parameters, the key components of the structure were captured. Thus, the intelligent analysis of structural safety was realized. The comparison of data verified that the intelligent method can effectively analyze the safety performance of the structure.