The marine globin dehaloperoxidase-hemoglobin
(DHP) from Amphitrite ornata was found to catalyze
the H2O2-dependent oxidation of monohaloindoles,
a previously
unknown class of substrate for DHP. Using 5-Br-indole as a representative
substrate, the major monooxygenated products were found to be 5-Br-2-oxindole
and 5-Br-3-oxindolenine. Isotope labeling studies confirmed that the
oxygen atom incorporated was derived exclusively from H2O2, indicative of a previously unreported peroxygenase
activity for DHP. Peroxygenase activity could be initiated from either
the ferric or oxyferrous states with equivalent substrate conversion
and product distribution. It was found that 5-Br-3-oxindole, a precursor
of the product 5-Br-3-oxindolenine, readily reduced the ferric enzyme
to the oxyferrous state, demonstrating an unusual product-driven reduction
of the enzyme. As such, DHP returns to the globin-active oxyferrous
form after peroxygenase activity ceases. Reactivity with 5-Br-3-oxindole
in the absence of H2O2 also yielded 5,5′-Br2-indigo above the expected reaction stoichiometry under aerobic
conditions, and O2-concentration studies demonstrated dioxygen
consumption. Nonenzymatic and anaerobic controls both confirmed the
requirements for DHP and molecular oxygen in the catalytic generation
of 5,5′-Br2-indigo, and together suggest a newly
identified oxidase activity for DHP.