2008
DOI: 10.1017/s014338570700051x
|View full text |Cite
|
Sign up to set email alerts
|

Construction of foliations with prescribed separatrix

Abstract: We build a germ of singular foliation in C 2 with analytical class of separatrix and holonomy representations prescribed. Thanks to this construction, we study the link between moduli of a foliation and moduli of its separatrix.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
15
0
1

Year Published

2008
2008
2024
2024

Publication Types

Select...
4
1

Relationship

4
1

Authors

Journals

citations
Cited by 5 publications
(16 citation statements)
references
References 8 publications
0
15
0
1
Order By: Relevance
“…The main result is a realization kind Theorem 2.2, which provides an isoholonomic deformation of a foliation with a given deformation of its separatrix. This theorem specializes to a result of [5] if there is no parameter. 1 Since the arguments of [5] and these used in this section are widely similar, we are only going to detail the new difficulties coming with the introduction of a parameter.…”
Section: Isoholonomic Deformations With Prescribed Separatrixmentioning
confidence: 95%
See 3 more Smart Citations
“…The main result is a realization kind Theorem 2.2, which provides an isoholonomic deformation of a foliation with a given deformation of its separatrix. This theorem specializes to a result of [5] if there is no parameter. 1 Since the arguments of [5] and these used in this section are widely similar, we are only going to detail the new difficulties coming with the introduction of a parameter.…”
Section: Isoholonomic Deformations With Prescribed Separatrixmentioning
confidence: 95%
“…This theorem specializes to a result of [5] if there is no parameter. 1 Since the arguments of [5] and these used in this section are widely similar, we are only going to detail the new difficulties coming with the introduction of a parameter. However, for the convenience of the reader we repeat here the relevant material from [5] thus making our exposition almost self-contained.…”
Section: Isoholonomic Deformations With Prescribed Separatrixmentioning
confidence: 95%
See 2 more Smart Citations
“…La preuve se trouve dans [2]. Nous en donnons ici un schéma simplifié : on établit d'abord le résultat sur le premier voisinage infinitésimal du diviseur ; puis, un cocycle de collage étant préparé, on effectue une double induction sur la longueur du processus de réduction de F et sur l'ordre du voisinage dans la filtration de M par les voisinages infinitésimaux de D. On y développe un algorithme de normalisation fondé sur deux éléments : l'équation cohomologique associée au résultat infinitésimal (2.1) et la formule de Campbell-Hausdorff.…”
Section: Esquisse De La Preuve Du Théorème 12unclassified