Electrospun fiber-based photocatalysts demonstrate significant potential in addressing global environmental and energy challenges, primarily due to their high specific surface areas and unique properties. This review examines recent advances in the application of these materials in photocatalytic processes, with a particular focus on water splitting and hydrogen production. The principles of the electrospun method are described in detail, along with the operating parameters, material characteristics, and environmental conditions that affect the fiber formation. Additionally, the review discusses the challenges, advantages, and future prospects of photocatalysts incorporating carbon materials, metals, semiconductors, and hybrid structures with improved performance. These materials have the potential to significantly improve the efficiency of hydrogen energy production, water purification, and CO2 recovery, highlighting their importance in engineering sciences.