We have demonstrated an efficient synthetic route with crystal structures for the construction of acidic pH-triggered visible-to-NIR interchangeable ratiometric fluorescent pH sensors. This bioresponsive probe exhibits pH-sensitive reversible absorption/emission features, low cytotoxicity, a huge 322 nm bathochromic spectral shift with augmented quantum yield from neutral to acidic pH, high sensitivity and selective targeting ability of live-cell lysosomes with ideal pK a , off-to-on narrow NIR absorption/fluorescence signals with high molar absorption coefficient at acidic lysosomal lumen, and in-situ live-cell pHactivated ratiometric imaging of lysosomal pH. Selective staining and ratiometric pH imaging in human carcinoma livecell lysosomes were monitored by dual-channel confocal laser scanning microscope using a pH-activatable organic fluorescent dye comprising a morpholine moiety for lysosome targeting and an acidic pH openable oxazolidine ring. Moreover, real-time tracking of lysosomes, 3D, and multicolor live-cell imaging have been achieved using the synthesized pH-activatable probe.