Construction of the Bicyclic Carbon Framework of Euphosalicin
David Schachamayr,
Johanna Templ,
Matthias Weil
et al.
Abstract:Our studies toward the total synthesis of the natural product euphosalicin (1) are presented. Different approaches targeting key intermediates are described, the synthesis of which includes findings on asymmetric dihydroxylations and ring-closing enyne metatheses (RCEYM). Their connection allowed the isolation of highly advanced precursors for studies on macrocyclizations. Our efforts culminated in the preparation of the unique C11/C12 (Z) isomer of the C13 nor methyl skeleton of euphosalicin (1).
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.