Smart highways represent a novel highway concept in the era of big data, emphasizing the synergy among people, vehicles, road facilities, and the environment. However, the operation and management of smart highways have become more intricate, surpassing the adaptability of traditional highway evaluation and management methods. This study integrates the distinctive characteristics of smart highway facilities and operational objectives to enhance and modernize the existing highway evaluation system. Drawing from research on smart highway construction projects, a smart highway evaluation system encompassing facility structure, electromechanical facilities, and operation services is formulated based on a hierarchical analysis method. The quantitative evaluation of each indicator is achieved by combining existing specifications and expert questionnaire solicitation. The group decision-making method is initially employed to optimize subjective weights, followed by the calculation of combined weights using both the entropy weight method and critic method in objective evaluation. Finally, a comprehensive evaluation model is established and validated through engineering projects. The results demonstrate that the evaluation system effectively highlights the advantages and disadvantages in the operation and management of smart highways, thereby fostering the advancement of smart highway iteration.