Soil–rock mixtures are commonly encountered in the construction of bored piles. Conventional bentonite support fluids have disadvantages, such as more significant environmental impacts, more complex mixing, bigger site footprint, weaker foundation performance, and overall low economies. The present study conducted a comprehensive investigation of partially hydrolyzed polyacrylamide (PHPA) polymer fluids, an alternative to bentonite ones, to drill into a soil-limestone mixture. The fluid flow pattern, aging behavior, and the influence of finer silty clay on polymer fluid were explored. The test results showed that polymer fluids were reasonably well fitted to the power-law model and were a good alternative to the conventional bentonite ones. In terms of their aging behavior, the remaining active viscosity of the polymer was at least 70% after a prolonged aging time of up to 30 days, showing the effective on-site use of polymer fluids. The mixing of silty clay significantly reduced the apparent viscosity of polymer fluids, with 10% silty clay causing a viscosity reduction of 76%, indicating the importance of fluid control in drilling these materials. A polymer formula, water + 0.08%PHPA + 0.1~0.5%Na2CO3, was proposed and was verified by drilling into a soil–limestone mixture. The polymer fluids led to small radial displacements around the boreholes with a high drilling quality. This work would be helpful for consultants and contractors designing and constructing bored piles in soil and rock mixtures utilizing polymer fluids.