We present an optical detection technique, called the beam deflection probe, to accurately measure contact times of normal-incidence impacts of steel and sapphire spheres with a transparent glass block. It exploits the deformation of the area that is in a mechanical touch during the rebound. The deformation of the surface acts as a dynamic contact mirror. When illuminated by a laser beam, total internal reflection takes place at the contact mirror, the beam is deflected from it, and its angular deflection history is monitored by a quadrant photodiode. A simple threshold-level data processing of the photodiode signals is used to determine the impact duration. It is shown that the shape of the signal is highly dependent on the location of the impact relative to the center of the laser-beam illuminated area while the determination of the contact time does not depend on the impact position. Using an automated ball release mechanism, the contact time of low-velocity impacts was measured for various ball diameters and approach velocities conforming to the Hertz contact theory. The proposed optical detection of contact times supplements the existing measurement techniques and represents the only alternative to the piezoelectric detection when contact times are to be measured on the microsecond scale.