Rooted cuttings of `Antonovka' apple, `Lynwood Gold' forsythia, double-flowered kerria, common ninebark, `Goldfinger' potentilla, and `Red Prince' weigela were grown in 2-gal (6-L) nursery containers filled with 1:1 (by volume) of waste compost and composted pine bark, under three fertilizer regimes: 1) liquid nutrients [target concentrations in ppm (mg.L-1): NH4-N, 13; NO3-N, 100; P, 28; K, 120; Ca, 92; Mg, 13; Fe, 1.3; Mn, 0.27; Zn, 0.23; Cu, 0.05; B, 0.22; Mo, 0.05; Na, <50; Cl, <50; and SO4 <300] delivered and recycled twice per day via a computer-controlled multifertilizer injector; 2) same nutrient formula and concentration rate delivered fresh via the injector but without recycling; and 3) Nutryon (Polyon) 17-5-12 controlled-release fertilizer incorporated into the medium at a rate of 11 lb/yd3 (6.5 kg·m-3). With recycled liquid nutrients, all species grew the same or more than with nonrecycled nutrients, and generally the poorest growth was with controlled-release fertilizer. Foliar concentrations of K (all species), N (all species), P (forsythia, kerria, potentilla, and weigela), and Mn (forsythia, potentilla, and weigela) were higher in plants supplied with recycled and/or nonrecycled nutrients than in those supplied with controlled-release fertilizer, while foliar concentrations of Ca (ninebark and kerria) and Mg (apple, kerria, ninebark, potentilla, and weigela) were lower. Compared to nonrecycled liquid nutrients, the amounts of individual recycled nutrients were reduced by (percentage in brackets): NH4-N (30), NO3-N (78), P (76), K (46), Ca (93), Mg (96), Fe (52), Mn (43), Zn (55), Cu (60), B (83), and Mo (66).